Physical activity counteracts metabolic syndrome-induced hypogonadotropic hypogonadism and erectile dysfunction in the rabbit

Author:

Morelli Annamaria1,Filippi Sandra2,Comeglio Paolo3,Sarchielli Erica1,Cellai Ilaria3,Pallecchi Marco4,Bartolucci Gianluca4,Danza Giovanna4,Rastrelli Giulia3,Corno Chiara3,Guarnieri Giulia1,Fuochi Elisa3,Vignozzi Linda35,Maggi Mario35

Affiliation:

1. Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy

2. Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy

3. Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy

4. Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy

5. Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy

Abstract

Metabolic syndrome (MetS) clusters cardiovascular and metabolic risk factors along with hypogonadism and erectile dysfunction. Lifestyle modifications including physical exercise (PhyEx) are well-known treatments for this condition. In this study, we analyzed the effect of PhyEx on hypothalamic-pituitary-testis axis and erectile function by use of an animal MetS model, previously established in rabbits fed a high-fat diet (HFD). Rabbits fed a regular diet (RD) were used as controls. A subset of both groups was trained on a treadmill. HFD rabbits showed typical MetS features, including HG (reduced T and LH) and impairment of erectile function. PhyEx in HFD rabbits completely restored plasma T and LH and the penile alterations. At testicular and hypothalamic levels, an HFD-induced inflammatory status was accompanied by reduced T synthesis and gonadotropin-releasing hormone (GnRH) immunopositivity, respectively. In the testis, PhyEx normalized HFD-related macrophage infiltration and increased the expression of steroidogenic enzymes and T synthesis. In the hypothalamus, PhyEx normalized HFD-induced gene expression changes related to inflammation and glucose metabolism, restored GnRH expression, particularly doubling mRNA levels, and regulated expression of molecules related to GnRH release (kisspeptin, dynorphin). Concerning MetS components, PhyEx significantly reduced circulating cholesterol and visceral fat. In multivariate analyses, cholesterol levels resulted as the main factor associated with MetS-related alterations in penile, testicular, and hypothalamic districts. In conclusion, our results show that PhyEx may rescue erectile function, exert anti-inflammatory effects on hypothalamus and testis, and increase LH levels and T production, thus supporting a primary role for lifestyle modification to combat MetS-associated hypogonadism and erectile dysfunction.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3