Dual-energy X-ray absorptiometry: fat estimation errors due to variation in soft tissue hydration

Author:

Pietrobelli Angelo1,Wang Zimian1,Formica Carmelo2,Heymsfield Steven B.1

Affiliation:

1. Obesity Research Center, St. Luke’s-Roosevelt Hospital, Columbia University, College of Physicians and Surgeons, New York 10025; and

2. Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York 10993

Abstract

Dual-energy X-ray absorptiometry (DXA) is rapidly gaining acceptance as a reference method for analyzing body composition. An important and unresolved concern is whether and to what extent variation in soft tissue hydration causes errors in DXA fat estimates. The present study aim was to develop and validate a DXA physical hydration model and then to apply this model by simulating errors arising from hypothetical overhydration states. The DXA physical hydration model was developed by first linking biological substance elemental content with photon attenuation. The validated physical model was next extended to describe photon attenuation changes anticipated when predefined amounts of two known composition components are mixed, as would occur when overhydration develops. Two overhydration models were developed in the last phase of study, formulated on validated physical models, and error was simulated for fluid surfeit states. Results indicate that systematic errors in DXA percent fat arise with added fluids when fractional masses are varied as a percentage of combined fluid + soft tissue mass. Three independent determinants of error magnitude were established: elemental content of overhydration fluid, fraction of combined fluid + soft tissue as overhydration fluid, and initial soft tissue composition. Small but systematic and predictable errors in DXA soft tissue composition analysis thus can arise with fluid balance changes.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3