Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate

Author:

Bonen A.1,McCullagh K. J. A.1,Putman C. T.1,Hultman E.1,Jones N. L.1,Heigenhauser G. J. F.1

Affiliation:

1. Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; The Karolinska Institute, S-141 Stockholm 86, Sweden; and Department of Medicine, McMaster University Medical Centre, Hamilton, Ontario, Canada L8N 3Z5

Abstract

We examined the effects of increasing a known lactate transporter protein, monocarboxylate transporter 1 (MCT1), on lactate extrusion from human skeletal muscle during exercise. Before and after short-term bicycle ergometry training [2 h/day, 7 days at 65% maximal oxygen consumption (V˙o 2 max)], subjects ( n = 7) completed a continuous bicycle ergometer ride at 30%V˙o 2 max (15 min), 60%V˙o 2 max (15 min), and 75% V˙o 2 max (15 min). Muscle biopsy samples (vastus lateralis) and arterial and femoral venous blood samples were obtained before exercise and at the end of each workload. After 7 days of training the MCT1 content in muscle was increased (+18%; P < 0.05). The concentrations of both muscle lactate and femoral venous lactate were reduced during exercise ( P < 0.05) that was performed after training. High correlations were observed between muscle lactate and venous lactate before training ( r = 0.92, P < 0.05) and after training ( r = 0.85, P < 0.05), but the slopes of the regression lines between these variables differed markedly. Before training, the slope was 0.12 ± 0.01 mM lactate ⋅ mmol lactate−1 ⋅ kg muscle dry wt−1, and this was increased by 33% after training to 0.18 ± 0.02 mM lactate ⋅ mmol lactate−1 ⋅ kg muscle dry wt−1. This indicated that after training the femoral venous lactate concentrations were increased for a given amount of muscle lactate. These results suggest that lactate extrusion from exercising muscles is increased after training, and this may be associated with the increase in skeletal muscle MCT1.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3