Time course of insulin action on tissue-specific intracellular glucose metabolism in normal rats

Author:

Koopmans Sietse J.1,Mandarino Lawrence1,Defronzo Ralph A.1

Affiliation:

1. Department of Medicine, University of Texas Health Science Center and Audie L. Murphy Memorial Veterans Affairs Hospital, San Antonio, Texas 78284; and Department of Endocrinology and Metabolic Diseases, Leiden University Hospital, 2333 AA Leiden, The Netherlands

Abstract

We investigated the time course of insulin action in conscious rats exposed to constant physiological hyperinsulinemia (∼100 mU/l) while maintaining euglycemia (∼100 mg/dl) for 0, 0.5, 2, 4, 8, or 12 h. [3-3H]glucose was infused to quantitate whole body glucose disposal (rate of disappearance, Rd), glycolysis (generation of3H2O in plasma), hepatic glucose production (HGP), and skeletal muscle and liver glycogen synthesis ([3-3H]glucose incorporation into glycogen and time-dependent change in tissue glycogen concentration). The basal Rd, which equals HGP, was 6.0 ± 0.3 mg ⋅ kg−1 ⋅ min−1. With increased duration of hyperinsulinemia from 0 to 0.5 to 2 to 4 h, Rd increased from 6.0 ± 0.3 to 21.0 ± 1.1 to 24.1 ± 1.5 to 26.6 ± 0.6 mg ⋅ kg−1 ⋅ min−1( P < 0.05 for 2 and 4 h vs. 0.5 h). During the first 2 h the increase in Rd was explained by parallel increases in glycolysis and glycogen synthesis. From 2 to 4 h the further increase in Rd was entirely due to an increase in glycolysis without change in glycogen synthesis. From 4 to 8 to 12 h of hyperinsulinemia, Rd decreased by 19% from 26.6 ± 0.6 to 24.1 ± 1.1 to 21.6 ± 1.8 mg ⋅ kg−1 ⋅ min−1( P < 0.05 for 8 h vs. 4 h and 12 h vs. 8 h). The progressive decline in Rd, in the face of constant hyperinsulinemia, occurred despite a slight increase (8–14%) in glycolysis and was completely explained by a marked decrease (64%) in muscle glycogen synthesis. In contrast, liver glycogen synthesis increased fourfold, indicating an independent regulation of muscle and liver glycogen synthesis by long-term hyperinsulinemia. In the liver, during the entire 12-h period of insulin stimulation, the contribution of the direct (from glucose) and the indirect (from C-3 fragments) pathways to net glycogen formation remained constant at 77 ± 5 and 23 ± 5%, respectively. HGP remained suppressed throughout the 12-h period of hyperinsulinemia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3