Effect of insulin on glycerol production in obese adolescents

Author:

Robinson Childsy1,Tamborlane William V.1,Maggs David G.1,Enoksson Staffan1,Sherwin Robert S.1,Silver David1,Shulman Gerald I.1,Caprio Sonia1

Affiliation:

1. Departments of Pediatrics and Internal Medicine, and the Yale Children’s General Clinical Research Center, Yale University School of Medicine, New Haven, Connecticut 06520; and the Department of Vascular Surgery, Huddinge University Hospital, Karolinska Institute, S-105 21 Stockholm, Sweden

Abstract

Impaired stimulation of glucose metabolism and reduced suppression of lipolytic activity have both been suggested as important defects related to the insulin resistance of adolescent obesity. To further explore the relationship between these abnormalities, we studied seven obese [body mass index (BMI) 35 ± 2 kg/m2] and seven lean (BMI 21 ± 1 kg/m2) adolescents aged 13–15 yr and compared them with nine lean adults (aged 21–27 yr, BMI 23 ± 1 kg/m2) during a two-step euglycemic-hyperinsulinemic clamp in combination with 1) a constant [2H5]glycerol (1.2 mg ⋅ m−2 ⋅ min−1) infusion to quantify glycerol turnover and 2) indirect calorimetry to estimate glucose and net lipid oxidation rates. In absolute terms, basal glycerol turnover was increased and suppression by insulin was impaired in obese adolescents compared with both groups of lean subjects ( P < 0.01). However, when the rates of glycerol turnover were adjusted for differences in body fat mass, the rates were similar in all three groups. Basal plasma free fatty acid (FFA) concentrations were significantly elevated, and the suppression by physiological increments in plasma insulin was impaired in obese adolescents compared with lean adults ( P < 0.05). In parallel with the high circulating FFA levels, net lipid oxidation in the basal state and during the clamp was also elevated in the obese group compared with lean adults. Net lipid oxidation was inversely correlated with glucose oxidation ( r = −0.50, P < 0.01). In conclusion, these data suggest that lipolysis is increased in obese adolescents (vs. lean adolescents and adults) as a consequence of an enlarged adipose mass rather than altered sensitivity of adipocytes to the suppressing action of insulin.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3