Metabolic-cytokine responses to a second immunological challenge with LPS in mice withT. gondiiinfection

Author:

Arsenijevic D.1,Girardier L.1,Seydoux J.1,Pechere J. C.2,Garcia I.3,Lucas R.4,Chang H. R.5,Dulloo A. G.1

Affiliation:

1. Departments of Physiology,

2. Microbiology,

3. Pathology, and

4. Internal Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; and

5. Laboratory of Nutrition/Infection 5, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215

Abstract

Injection of 10 cysts of Toxoplasma gondii (Me49 strain) into Swiss Webster mice results in 1) an acute phase of infection lasting for 2–3 wk, characterized by weight loss, and 2) a chronic phase in which surviving mice show either partial weight recovery (Gainers) or persistent, although stable, cachexia (Nongainers). In response to a second immunological stimulation with lipopolysaccharide (LPS) in the chronic phase of the infection, it is shown that 1) the increase in energy expenditure was more prolonged in both groups of infected mice than in controls, 2) the intensity and duration of hypophagia were also differently affected with Nongainers > Gainers > controls, and 3) the infected mice had higher serum levels of tumor necrosis factor-α (TNF-α) and interleukin (IL)-10 and a lower ratio of IL-10 to TNF-α than controls. In contrast, serum IL-4 increased to the same level in all three groups. Evaluation of the permeability of the blood-brain barrier by intravenous injection of Evans blue revealed a marked staining in the brain of only the infected Nongainers. Taken together, these results indicate that, in mice with chronic toxoplasmosis, a second nonspecific challenge (with LPS) exacerbates the hypophagic and hypermetabolic states, the latter being associated with hyperresponsiveness in TNF-α and IL-10 production. Furthermore, the greater exacerbation of the hypophagic state in mice showing persistent cachexia may be due to a preexisting higher permeability of the blood-brain barrier, which would allow a greater access of plasma-borne cytokines and/or other neuroimmunologically active substances to the central nervous system.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3