SARS-CoV-2: influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19

Author:

van Kempen Theo A. T. G.1ORCID,Deixler Elisabeth2

Affiliation:

1. North Carolina State University, Raleigh, North Carolina

2. München, Germany

Abstract

The use of vitamin D to reduce the severity of COVID-19 complications is receiving considerable attention, backed by encouraging data. Its purported mode of action is as an immune modulator. Vitamin D, however, also affects the metabolism of phosphate and Mg, which may well play a critical role in SARS-CoV-2 pathogenesis. SARS-CoV-2 may induce a cytokine storm that drains ATP whose regeneration requires phosphate and Mg. These minerals, however, are often deficient in conditions that predispose people to severe COVID-19, including older age (especially males), diabetes, obesity, and usage of diuretics. Symptoms observed in severe COVID-19 also fit well with those seen in classical hypophosphatemia and hypomagnesemia, such as thrombocytopenia, coagulopathy, dysfunction of liver and kidneys, neurologic disturbances, immunodeficiency, failure of heart and lungs, delayed weaning from a respirator, cardiac arrhythmia, seizures, and, finally, multiorgan failure. Deficiencies of phosphate and Mg can be amplified by kidney problems commonly observed in patients with COVID-19 resulting in their wastage into urine. Available data show that phosphate and Mg are deficient in COVID-19, with phosphate showing a remarkable correlation with its severity. In one experiment, patients with COVID-19 were supplemented with a cocktail of vitamin D3, Mg, and vitamin B12, with very encouraging results. We, thus, argue that patients with COVID-19 should be monitored and treated for phosphate and Mg deficiencies, ideally already in the early phases of infection. Supplementation of phosphate and Mg combined with vitamin D could also be implemented as a preventative strategy in populations at risk.

Funder

not applicable: this is volunteer work

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3