Alanine, arginine, cysteine, and proline, but not glutamine, are substrates for, and acute mediators of, the liver-α-cell axis in female mice

Author:

Galsgaard Katrine D.12,Jepsen Sara L.12,Kjeldsen Sasha A. S.12,Pedersen Jens13,Wewer Albrechtsen Nicolai J.145,Holst Jens J.12

Affiliation:

1. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

2. Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

3. Department of Nephrology and Endocrinology, Nordsjaellands Hospital Hilleroed, University of Copenhagen, Hilleroed, Denmark

4. Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark

5. Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract

The aim of this study was to identify the amino acids that stimulate glucagon secretion in mice and whose metabolism depends on glucagon receptor signaling. Pancreata of female C57BL/6JRj mice were perfused with 19 individual amino acids and pyruvate (at 10 mM), and secretion of glucagon was assessed using a specific glucagon radioimmunoassay. Separately, a glucagon receptor antagonist (GRA; 25–2648, 100 mg/kg) or vehicle was administered to female C57BL/6JRj mice 3 h before an intraperitoneal injection of four different isomolar amino acid mixtures (in total 7 µmol/g body wt) as follows: mixture 1 contained alanine, arginine, cysteine, and proline; mixture 2 contained aspartate, glutamate, histidine, and lysine; mixture 3 contained citrulline, methionine, serine, and threonine; and mixture 4 contained glutamine, leucine, isoleucine, and valine. Blood glucose, plasma glucagon, amino acid, and insulin concentrations were measured using well-characterized methodologies. Alanine ( P = 0.03), arginine ( P < 0.0001), cysteine ( P = 0.01), glycine ( P = 0.02), lysine ( P = 0.02), and proline ( P = 0.03), but not glutamine ( P = 0.9), stimulated glucagon secretion from the perfused mouse pancreas. However, when the four isomolar amino acid mixtures were administered in vivo, the four mixtures elicited similar glucagon responses ( P > 0.5). Plasma concentrations of total amino acids in vivo were higher after administration of GRA when mixture 1 ( P = 0.004) or mixture 3 ( P = 0.04) were injected. Our data suggest that alanine, arginine, cysteine, and proline, but not glutamine, are involved in the acute regulation of the liver-α-cell axis in female mice, as they all increased glucagon secretion and their disappearance rate was altered by GRA.

Funder

Novo Nordisk Foundation

Novo Nordisk Foundation Scholarship Programme 2017

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3