Skeletal muscle mitochondria exhibit decreased pyruvate oxidation capacity and increased ROS emission during surgery-induced acute insulin resistance

Author:

Hagve Martin12,Gjessing Petter Fosse13,Fuskevåg Ole Martin4,Larsen Terje S.2,Irtun Øivind13

Affiliation:

1. Laboratory of Surgical Research, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway;

2. Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway;

3. Department of Digestive Surgery, University Hospital of North Norway, Tromsø, Norway; and

4. Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North Norway, Tromsø, Norway

Abstract

Development of acute insulin resistance represents a negative factor after surgery, but the underlying mechanisms are not fully understood. We investigated the postoperative changes in insulin sensitivity, mitochondrial function, enzyme activities, and release of reactive oxygen species (ROS) in skeletal muscle and liver in pigs on the 2nd postoperative day after major abdominal surgery. Peripheral and hepatic insulin sensitivity were assessed by d-[6,6-2H2]glucose infusion and hyperinsulinemic euglycemic step clamping. Surgical trauma elicited a decline in peripheral insulin sensitivity (∼34%, P < 0.01), whereas hepatic insulin sensitivity remained unchanged. Intramyofibrillar (IFM) and subsarcolemma mitochondria (SSM) isolated from skeletal muscle showed a postoperative decline in ADP-stimulated respiration (VADP) for pyruvate (∼61%, P < 0.05, and ∼40%, P < 0.001, respectively), whereas VADP for glutamate and palmitoyl-l-carnitine (PC) was unchanged. Mitochondrial leak respiration with PC was increased in SSM (1.9-fold, P < 0.05) and IFM (2.5-fold, P < 0.05), indicating FFA-induced uncoupling. The activity of the pyruvate dehydrogenase complex (PDC) was reduced (∼32%, P < 0.01) and positively correlated to the decline in peripheral insulin sensitivity ( r = 0.748, P < 0.05). All other mitochondrial enzyme activities were unchanged. No changes in mitochondrial function in liver were observed. Mitochondrial H2O2 and O2·− emission was measured spectrofluorometrically, and H2O2 was increased in SSM, IFM, and liver mitochondria (∼2.3-, ∼2.5-, and ∼2.3-fold, respectively, all P < 0.05). We conclude that an impairment in skeletal muscle mitochondrial PDC activity and pyruvate oxidation capacity arises in the postoperative phase along with increased ROS emission, suggesting a link between mitochondrial function and development of acute postoperative insulin resistance.

Funder

Northern Norway Regional Health Authority

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3