Role of the autonomic nervous system in the development of hyperinsulinemia by high-carbohydrate formula feeding to neonatal rats

Author:

Mitrani Paul,Srinivasan Malathi,Dodds Catherine,Patel Mulchand S.

Abstract

An early dietary intervention in the form of a high-carbohydrate (HC) milk formula in neonatal rat pups results in immediate onset of hyperinsulinemia. While increased insulin secretion in HC rats has been shown to be related to hypersensitivity to glucose, the immediate onset of hyperinsulinemia and its persistence throughout the suckling period suggest involvement of multiple systems that enhance insulin secretion in response to increased demand. Evidence presented here in 12-day-old HC rats indicates that altered activity of the autonomic nervous system contributes to enhanced insulin secretory responses to glucose stimulation through increased parasympathetic and decreased sympathetic signaling. Both in vivo and in vitro studies have shown that HC rats secrete significantly higher levels of insulin in response to glucose in the presence of acetylcholine, a cholinergic agonist, while sensitivity to inhibition of insulin secretion by oxymetazoline, an α2a-adrenergic receptor (α2aAR) agonist, was reduced. In addition, HC rats showed increased sensitivity to blockade of cholinergic-induced insulin secretion by the muscarinic type 3 receptor (M3R) antagonist 4-diphenylacetoxy- N-methylpiperidine methobromide, as well as increased potentiation of glucose-stimulated insulin secretion by treatment with yohimbine. Increases in islets levels of M3R, phospholipase C-β1, and protein kinase Cα mRNAs, as well as decreased α2aAR mRNA, in 12-day-old HC rats provide a mechanistic connection to the changes in insulin secretion seen in HC rats. In conclusion, altered autonomic regulation of insulin secretion, due to the HC nutritional intervention, contributes to the development of hyperinsulinemia in 12-day-old HC rats.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3