Recurrent glucose deprivation leads to the preferential use of lactate by neurons in the ventromedial hypothalamus

Author:

Shah Maitreyee1,Addison Augustina1,Wang Peili1,Zhu Wanling1,Chan Owen2

Affiliation:

1. Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut

2. Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah

Abstract

Increased GABAergic output in the ventromedial hypothalamus (VMH) contributes to counterregulatory failure in recurrently hypoglycemic (RH) rats, and lactate, an alternate fuel source in the brain, contributes to this phenomenon. The current study assessed whether recurring bouts of glucose deprivation enhanced neuronal lactate uptake and, if so, whether this influenced γ-aminobutyric acid (GABA) output and the counterregulatory responses. Glucose deprivation was induced using 5-thioglucose (5TG). Control rats received an infusion of artificial extracellular fluid. These groups were compared with RH animals. Subsequently, the rats underwent a hypoglycemic clamp with microdialysis. To test whether 5TG affected neuronal lactate utilization, a subgroup of 5TG-treated rats was microinjected with a lactate transporter inhibitor [cyano-4-hydroxycinnamate (4CIN)] just before the start of the clamp. Both RH and 5TG raised VMH GABA levels, and this was associated with impaired counterregulatory responses. 4CIN reduced VMH GABA levels and restored the hormone responses in the 5TG group. We then evaluated [14C]lactate uptake in hypothalamic neuronal cultures. Recurring exposure to low glucose increased monocarboxylate transporter-2 mRNA expression and augmented lactate uptake. Taken together, our data suggest that glucose deprivation, per se, enhances lactate utilization in hypothalamic neurons, and this may contribute to suppression of the counterregulatory responses to hypoglycemia.

Funder

JDRF

American Diabetes Association (ADA)

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3