Affiliation:
1. Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co., Ltd.,Shizuoka, Japan.
Abstract
To clarify the role of the granulocyte colony-stimulating factor (G-CSF) receptor in the nonlinear elimination of a recombinant human G-CSF derivative, nartograstim (NTG), the accompanying changes in the in vivo NTG total body clearance at steady state (CLss) or the early-phase tissue uptake clearance (CLuptake) in rats were compared with the change in the number of G-CSF receptors in bone marrow. The infusion rate-dependent decrease in CLss in control rats confirmed the existence of a saturable elimination mechanism for NTG. The Michaelis-Menten constant (Km) and maximal velocity for this saturable process were estimated to be 107 pM and 15.5 pmol.h-1.kg-1, respectively. The Km for this saturable process was comparable with the dissociation constant (Kd) for the specific binding of NTG to bone marrow cells. After administration of excess NTG, the CLuptake of tracer amounts of 1251-NTG by bone marrow and spleen, which corresponds to the receptor density in the tissues, was reduced at 2 h but gradually recovered. This change in CLuptake corresponds well to the change in the in vitro NTG-binding capacity in each isolated cell. This reduction in CLuptake might be due to the downregulation of G-CSF receptors on the cell surface. On the other hand, the saturable CLss in cyclophosphamide-treated rats was 17% of that in control rats, whereas the saturable CLss in rats given NTG repeatedly was twofold greater than in controls, which is associated with the upregulation of G-CSF receptors.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献