Evidence for reverse flux through pyruvate kinase in skeletal muscle

Author:

Jin Eunsook S.,Sherry A. Dean,Malloy Craig R.

Abstract

Conversion of lactate to glucose was examined in myotubes, minced muscle tissue, and rats exposed to2H2O or13C-enriched substrates. Myotubes or minced skeletal muscle incubated with [U-13C3]lactate released small amounts of [1,2,3-13C3]- or [4,5,6-13C3]glucose. This labeling pattern is consistent with direct transfer from lactate to glucose without randomization in the tricarboxylic acid (TCA) cycle. After exposure of incubated muscle to2H2O, [U-13C3]lactate, glucose, and glutamine, there was minimal release of synthesized glucose to the medium based on a low level of2H enrichment in medium glucose but 50- to 100-fold greater2H enrichment in glucosyl units from glycogen. The13C enrichment pattern in glycogen from incubated skeletal muscle was consistent only with direct transfer of lactate to glucose without exchange in TCA cycle intermediates.13C nuclear magnetic resonance (NMR) spectra of glutamate from the same tissue showed flux from lactate through pyruvate dehydrogenase but not flux through pyruvate carboxylase into the TCA cycle. Carbon from an alternative substrate for glucose production that requires metabolism through the TCA cycle, propionate, did not enter glycogen, suggesting that TCA cycle intermediates do not exchange with phospho enolpyruvate. In vivo, the13C labeling patterns in hepatic glycogen and plasma glucose after administration of [U-13C3]lactate did not differ significantly. However, skeletal muscle glycogen was substantially enriched in [1,2,3-13C3]- and [4,5,6-13C3]glucose units that could only occur through skeletal muscle glyconeogenesis rather than glycogenesis. Lactate serves as a substrate for glyconeogenesis in vivo without exchange into symmetric intermediates of the TCA cycle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3