Relationship between glutamine concentration and protein synthesis in rat skeletal muscle

Author:

Jepson M. M.1,Bates P. C.1,Broadbent P.1,Pell J. M.1,Millward D. J.1

Affiliation:

1. Department of Human Nutrition, London School of Hygiene and Tropical Medicine, United Kingdom.

Abstract

Muscle glutamine concentration ([GLN]) and protein synthesis rate (Ks) have been examined in vivo in well-fed, protein-deficient, starved, and endotoxemic rats. With protein deficiency (8 or 5% casein diet), [GLN] fell from 7.70 to 5.58 and 3.56 mmol/kg in the 8 and 5% diet groups, with Ks falling from 15.42 to 9.1 and 6.84%/day. Three-day starvation reduced [GLN] and Ks to 2.38 mmol/kg and 5.6%/day, respectively. In all these groups food intakes and insulin were generally well maintained (except in the starved group), whereas free 3,5,3'-triiodothyronine (T3) was depressed in the starved and 5% protein group. The E. coli lipopolysaccharide endotoxin (3 mg/kg) reduced [GLN] to 5.85 and 4.72 mmol/kg and Ks to 10.5 and 9.10%/day in two well-fed groups. Insulin levels were increased, and free T3 levels fell. Combined protein deficiency and endotoxemia further reduced [GLN] and Ks to 1.88 mmol/kg and 4.01%/day, respectively, in the 5% protein rats. Changes in both ribosomal activity (KRNA) and concentration (RNA/protein) contributed to the fall in Ks in malnutrition and endotoxemia, although reductions in the RNA concentration were most marked with protein deficiency and reductions in the KRNA dominated the response to the endotoxin. The changes in [GLN] and Ks were highly correlated as were [GLN] and both KRNA and the RNA concentration, and these relationships were unique to glutamine. These relationships could reflect sensitivity of glutamine transport and protein synthesis to the same regulatory influences, and the particular roles of insulin and T3 are discussed, as well as any direct influence of glutamine on protein synthesis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3