Affiliation:
1. Department of Kinesiology and Health Education, University of Texas,Austin 78712.
Abstract
The purposes of this study were to determine whether the muscle insulin resistance of the obese rat is due to a defect in the glucose transport process and whether the insulin resistance is fiber-type specific. The hindlimbs of fasted, 14-wk-old obese (fa/fa) and lean (fa/?) Zucker rats were perfused with perfusate containing 8 mM glucose and no insulin or 8 mM glucose and either a physiological (0.15 mU/ml), a submaximal (1.50 mU/ml), or a maximal (15.0 mU/ml) insulin concentration. Glucose uptake was determined after which the initial rate of glucose transport was determined using 3-O-methyl-D-glucose (3-OMG). Glucose uptake of the obese rats was depressed by 40, 33, 42, and 47% in the absence of insulin and in the presence of the physiological, submaximal, and maximal insulin concentrations, respectively, when compared with lean littermates. Glucose transport in the absence and in the presence of the three insulin concentrations was significantly lower in the soleus (slow-twitch, oxidative fibers), red quadriceps (fast-twitch, oxidative, glycolytic fibers), and gastrocnemius (mixed fibers) of the obese rats when compared with lean rats. Glucose transport in the white quadriceps (fast-twitch, glycolytic fibers) was significantly lower in the obese rats in the absence of insulin and in the presence of the submaximal and maximal insulin concentrations. The glycogen concentration and the activity of hexokinase were the same and the glycogen synthase activity was higher in the muscles for the obese rats when compared to lean rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献