Characterization of MCH-mediated obesity in mice

Author:

Ito Masahiko1,Gomori Akira1,Ishihara Akane1,Oda Zenjun1,Mashiko Satoshi1,Matsushita Hiroko1,Yumoto Mariko1,Ito Makoto1,Sano Hideki1,Tokita Shigeru1,Moriya Minoru1,Iwaasa Hisashi1,Kanatani Akio1

Affiliation:

1. Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Okubo 3, Tsukuba 300-2611, Japan

Abstract

Melanin-concentrating hormone (MCH) is a cyclic orexigenic peptide expressed in the lateral hypothalamus. Recently, we demonstrated that chronic intracerebroventricular infusion of MCH induced obesity accompanied by sustained hyperphagia in mice. Here, we analyzed the mechanism of MCH-induced obesity by comparing animals fed ad libitum with pair-fed and control animals. Chronic infusion of MCH significantly increased food intake, body weight, white adipose tissue (WAT) mass, and liver mass in ad libitum-fed mice on a moderately high-fat diet. In addition, a significant increase in lipogenic activity was observed in the WAT of the ad libitum-fed group. Although body weight gain was marginal in the pair-fed group, MCH infusion clearly enhanced the lipogenic activity in liver and WAT. Plasma leptin levels were also increased in the pair-fed group. Furthermore, MCH infusion significantly reduced rectal temperatures in the pair-fed group. In support of these findings, mRNA expression of uncoupling protein-1, acyl-CoA oxidase, and carnitine palmitoyltransferase I, which are key molecules involved in thermogenesis and fatty acid oxidation, were reduced in the brown adipose tissue (BAT) of the pair-fed group, suggesting that MCH infusion might reduce BAT functions. We conclude that the activation of MCH neuronal pathways stimulated adiposity, in part resulting from increased lipogenesis in liver and WAT and reduced energy expenditure in BAT. These findings confirm that modulation of energy homeostasis by MCH may play a critical role in the development of obesity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3