Adipose triacylglycerol lipase deletion alters whole body energy metabolism and impairs exercise performance in mice

Author:

Huijsman Elisabeth,van de Par Caro,Economou Catherine,van der Poel Chris,Lynch Gordon S.,Schoiswohl Gabriele,Haemmerle Gunter,Zechner Rudolf,Watt Matthew J.

Abstract

Adipose triacylglycerol lipase (ATGL) and hormone-sensitive lipase (HSL) are essential for efficient lipolysis in adipose tissue and skeletal muscle. Herein, we utilized whole body knockout mice to address the importance of ATGL and HSL for metabolic function and exercise performance. ATGL deletion severely disrupts whole-body substrate partitioning at rest; reducing plasma free fatty acid (FFA) availability (WT: 0.49 ± 0.06 vs. ATGL−/− 0.34 ± 0.03 mM), which in turn enhances carbohydrate oxidation during fasting (mean RER, WT: 0.86 ± 0.02, ATGL−/− 0.90 ± 0.01) and is associated with depleted muscle and liver glycogen stores. While plasma FFA was modestly reduced (23%) and whole body carbohydrate metabolism increased in HSL−/− mice, resting glycogen storage was not compromised. Studies in isolated muscles revealed that the capacity of ATGL and HSL−/− muscle to transport exogenous fatty acids is not compromised and the capacity to oxidize fatty acids is actually increased (3.7- and 1.3-fold above WT for ATGL and HSL). The exercise-induced increase in plasma FFA and glycerol was blunted with ATGL or HSL deletion, demonstrating an impaired capacity for exercise-induced lipolysis in these mice. Carbohydrate oxidation was increased concomitantly during exercise in ATGL−/− and HSL−/− mice, resulting in more muscle and liver glycogen depletion. Maximal running velocity and endurance capacity were reduced by 42% and 46% in ATGL−/− mice, but not in HSL−/− mice. The reduction in performance in ATGL−/− mice was not due to defective muscle contractile performance. These results demonstrate an essential role for both ATGL and HSL in maintaining adequate FFA supply to sustain normal substrate metabolism at rest and during exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3