Trafficking of dietary oleic, linolenic, and stearic acids in fasted or fed lean rats

Author:

Bessesen Daniel H.1,Vensor S. Holly1,Jackman Matthew R.1

Affiliation:

1. Division of Endocrinology, Department of Medicine, Denver Health Medical Center, Denver, Colorado 80204-4507

Abstract

Increasing evidence supports the notion that there are significant differences in the health effects of diets enriched in saturated, as opposed to monounsaturated or polyunsaturated fat. However, the current understanding of how these types of fat differ in their handling by relevant tissues is incomplete. To examine the effects of fat type and nutritional status on the metabolic fate of dietary fat, we administered 14C-labeled oleic, linolenic, or stearic acid with a small liquid meal to male Sprague-Dawley rats previously fasted for 15 h (fasted) or previously fed ad libitum (fed).14CO2 production was measured for 8 h after tracer administration. The 14C content of gastrointestinal tract, serum, liver, skeletal muscle (soleus, lateral, and medial gastrocnemius), and adipose tissue (omental, retroperitoneal, and epididymal) was measured at six time points (2, 4, 8, 24, and 48 h and 10 days) after tracer administration. Plasma levels of glucose, insulin, and triglyceride were also measured. Oxidation of stearic acid was significantly less than that of either linolenic or oleic acid in both the fed and fasted states. This reduction was in part explained by a greater retention of stearic acid within skeletal muscle and liver. Oxidation of oleate and stearate were significantly lower in the fed state than in the fasted state. In the fasted state, liver and skeletal muscle were quantitatively more important than adipose tissue in the uptake of dietary fat tracers during the immediate postprandial period. In contrast, adipose tissue was quantitatively more important than skeletal muscle or liver in the fed state. The movement of carbons derived from dietary fat between tissues is a complex time-dependent process, which varies in response to the type of fat ingested and the metabolic state of the organism.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3