Regulation of protein synthesis after acute resistance exercise in diabetic rats

Author:

Farrell Peter A.1,Fedele Mark J.1,Vary Thomas C.1,Kimball Scot R.1,Lang Charles H.1,Jefferson Leonard S.1

Affiliation:

1. Noll Physiological Research Center and Department of Kinesiology, University Park 16802; and Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033

Abstract

These studies determined whether insulin-like growth factor-I (IGF-I) involvement in exercise-stimulated anabolic processes becomes more evident during hypoinsulinemia. Male Sprague-Dawley rats ( n = 6–12/group) were made diabetic (blood glucose ≅ 300 mg/dl) by partial pancreatectomy (PPX) or remained nondiabetic (glucose ≅ 144 mg/dl). Rats performed acute resistance exercise by repetitive standing on the hindlimbs with weighted backpacks (ex), or they remained sedentary (sed). Resistance exercise caused increases in rates of protein synthesis (nmol Phe incorporated ⋅ g muscle−1 ⋅ h−1, measured for gastrocnemius muscle in vivo 16 h after exercise) for both nondiabetic [sed = 154 ± 6 (SE) vs. ex = 189 ± 7] and diabetic rats (PPXsed = 152 ± 11 vs. PPXex = 202 ± 14, P < 0.05). Arterial plasma insulin concentrations in diabetic rats, ≅180 pM, were less than one-half those found in nondiabetic rats, ≅444 pM, ( P < 0.05). The activity of eukaryotic initiation factor 2B (eIF2B; pmol GDP exchanged/min) was higher ( P < 0.05) in ex rats (sed = 0.028 ± 0.006 vs. ex = 0.053 ± 0.015; PPXsed = 0.033 ± 0.013 vs. PPXex = 0.047 ± 0.009) regardless of diabetic status. Plasma IGF-I concentrations were higher in ex compared with sed diabetic rats ( P < 0.05). In contrast, plasma IGF-I was not different in nondiabetic ex or sed rats. Muscle IGF-I (ng/g wet wt) was similar in ex and sed nondiabetic rats, but in diabetic rats was 2- to 3-fold higher in ex ( P < 0.05) than in sed rats. In conclusion, moderate hypoinsulinemia that is sufficient to alter glucose homeostasis does not inhibit an increase in rates of protein synthesis after acute moderate-intensity resistance exercise. This preserved response may be due to a compensatory increase in muscle IGF-I content and a maintained ability to activate eIF2B.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3