Malonyl-CoA, fuel sensing, and insulin resistance

Author:

Ruderman Neil B.1,Saha Asish K.1,Vavvas Demetrios1,Witters Lee A.2

Affiliation:

1. Diabetes Unit, Section of Endocrinology and Departments of Medicine and Physiology, Boston University Medical Center, Boston, Massachusetts 02118; and

2. Endocrine-Metabolism Division, Department of Medicine and Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755

Abstract

Malonyl-CoA is an allosteric inhibitor of carnitine palmitoyltransferase (CPT) I, the enzyme that controls the transfer of long-chain fatty acyl (LCFA)-CoAs into the mitochondria where they are oxidized. In rat skeletal muscle, the formation of malonyl-CoA is regulated acutely (in minutes) by changes in the activity of the β-isoform of acetyl-CoA carboxylase (ACCβ). This can occur by at least two mechanisms: one involving cytosolic citrate, an allosteric activator of ACCβ and a precursor of its substrate cytosolic acetyl-CoA, and the other involving changes in ACCβphosphorylation. Increases in cytosolic citrate leading to an increase in the concentration of malonyl-CoA occur when muscle is presented with insulin and glucose, or when it is made inactive by denervation, in keeping with a diminished need for fatty acid oxidation in these situations. Conversely, during exercise, when the need of the muscle cell for fatty acid oxidation is increased, decreases in the ATP/AMP and/or creatine phosphate-to-creatine ratios activate an isoform of an AMP-activated protein kinase (AMPK), which phosphorylates ACCβ and inhibits both its basal activity and activation by citrate. The central role of cytosolic citrate links this malonyl-CoA regulatory mechanism to the glucose-fatty acid cycle concept of Randle et al. (P. J. Randle, P. B. Garland. C. N. Hales, and E. A. Newsholme. Lancet 1: 785–789, 1963) and to a mechanism by which glucose might autoregulate its own use. A similar citrate-mediated malonyl-CoA regulatory mechanism appears to exist in other tissues, including the pancreatic β-cell, the heart, and probably the central nervous system. It is our hypothesis that by altering the cytosolic concentrations of LCFA-CoA and diacylglycerol, and secondarily the activity of one or more protein kinase C isoforms, changes in malonyl-CoA provide a link between fuel metabolism and signal transduction in these cells. It is also our hypothesis that dysregulation of the malonyl-CoA regulatory mechanism, if it leads to sustained increases in the concentrations of malonyl-CoA and cytosolic LCFA-CoA, could play a key role in the pathogenesis of insulin resistance in muscle. That it may contribute to abnormalities associated with the insulin resistance syndrome in other tissues and the development of obesity has also been suggested. Studies are clearly needed to test these hypotheses and to explore the notion that exercise and some pharmacological agents that increase insulin sensitivity act via effects on malonyl-CoA and/or cytosolic LCFA-CoA.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3