TNF-binding protein ameliorates inhibition of skeletal muscle protein synthesis during sepsis

Author:

Cooney Robert1,Kimball Scot R.1,Eckman Rebecca1,Maish George1,Shumate Margaret1,Vary Thomas C.1

Affiliation:

1. Department of Cellular and Molecular Physiology and Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033

Abstract

We examined the effects of TNF-binding protein (TNFBP) on regulatory mechanisms of muscle protein synthesis during sepsis in four groups of rats: Control; Control+TNFBP; Septic; and Septic+TNFBP. Saline (1.0 ml) or TNFBP (1 mg/kg, 1.0 ml) was injected daily starting 4 h before the induction of sepsis. The effect of TNFBP on gastrocnemius weight, protein content, and the rate of protein synthesis was examined 5 days later. Sepsis reduced the rate of protein synthesis by 35% relative to controls by depressing translational efficiency. Decreases in protein synthesis were accompanied by similar reductions in protein content and muscle weight. Treatment of septic animals with TNFBP for 5 days prevented the sepsis-induced inhibition of protein synthesis and restored translational efficiency to control values. TNFBP treatment of Control rats for 5 days was without effect on muscle protein content or protein synthesis. We also assessed potential mechanisms regulating translational efficiency. The phosphorylation state of p70S6 kinase was not altered by sepsis. Sepsis reduced the gastrocnemius content of eukaryotic initiation factor 2Bε (eIF2Bε), but not eIF2α. The decrease in eIF2Bε content was prevented by treatment of septic rats with TNFBP. TNFBP ameliorates the sepsis-induced changes in protein metabolism in gastrocnemius, indicating a role for TNF in the septic process. The data suggest that TNF may impair muscle protein synthesis by reducing expression of specific initiation factors during sepsis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3