Regulation of skeletal muscle UCP-2 and UCP-3 gene expression by exercise and denervation

Author:

Cortright Ronald N.1,Zheng Donghai1,Jones Jared P.1,Fluckey James D.1,DiCarlo Stephen E.2,Grujic Danica3,Lowell Bradford B.3,Dohm G. Lynis1

Affiliation:

1. Department of Biochemistry, East Carolina University School of Medicine, Greenville, North Carolina 27858–4354;

2. Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201; and

3. Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215

Abstract

The factors that regulate gene expression of uncoupling proteins 2 and 3 (UCP-2 and UCP-3) in skeletal muscle are poorly understood, but both genes are clearly responsive to the metabolic state of the organism. Therefore, we tested the hypothesis that denervation and acute and/or chronic exercise (factors that profoundly affect metabolism) would alter UCP-2 and UCP-3 gene expression. For the denervation studies, the sciatic nerve of rat and mouse hindlimb was sectioned in one leg while the contralateral limb served as control. Northern blot analysis revealed that denervation was associated with a 331% increase ( P < 0.001) in UCP-3 mRNA and a 200% increase ( P < 0.01) in UCP-2 mRNA levels in rat mixed gastrocnemius (MG) muscle. In contrast, denervation caused a 53% decrease ( P< 0.001) in UCP-3 and a 63% increase ( P < 0.01) in UCP-2 mRNA levels in mouse MG. After acute exercise (2-h treadmill running), rat UCP-3 mRNA levels were elevated (vs. sedentary control) 252% ( P < 0.0001) in white gastrocnemius and 63% ( P < 0.05) in red gastrocnemius muscles, whereas UCP-2 levels were unaffected. To a lesser extent, elevations in UCP-3 mRNA (22%; P < 0.01) and UCP-2 mRNA (55%; P < 0.01) levels were observed after acute exercise in the mouse MG. There were no changes in either UCP-2 or UCP-3 mRNA levels after chronic exercise (9 wk of wheel running). These results indicate that acute exercise and denervation regulate gene expression of skeletal muscle UCPs.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3