Affiliation:
1. Noll Physiological Research Center, The Pennsylvania State University, University Park, Pennsylvania 16802; and
2. Departments of Experimental Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
Abstract
Physiological stressors such as sepsis and tissue damage initiate an acute immune response and cause transient systemic insulin resistance. This study was conducted to determine whether tumor necrosis factor-α (TNF-α), a cytokine produced by immune cells during skeletal muscle damage, decreases insulin responsiveness at the cellular level. To examine the molecular mechanisms associated with TNF-α and insulin action, we measured insulin receptor substrate (IRS)-1- and IRS-2-mediated phosphatidylinositol 3-kinase (PI 3-kinase) activation, IRS-1-PI 3-kinase binding, IRS-1 tyrosine phosphorylation, and the phosphorylation of two mitogen-activated protein kinases (MAPK, known as p42MAPK and p44MAPK) in cultured C2C12myotubes. Furthermore, we determined the effects of TNF-α on insulin-stimulated 2-deoxyglucose (2-DG) uptake. We observed that TNF-α impaired insulin stimulation of IRS-1- and IRS-2-mediated PI 3-kinase activation by 54 and 55% ( P< 0.05), respectively. In addition, TNF-α decreased insulin-stimulated IRS-1 tyrosine phosphorylation by 40% ( P < 0.05). Furthermore, TNF-α repressed insulin-induced p42MAPKand p44MAPK tyrosine phosphorylation by 81% ( P < 0.01). TNF-α impairment of insulin signaling activation was accompanied by a decrease ( P < 0.05) in 2-DG uptake in the muscle cells (60 ± 4 vs. 44 ± 6 pmol ⋅ min−1 ⋅ mg−1). These data suggest that increases in TNF-α may cause insulin resistance in skeletal muscle by inhibiting IRS-1- and IRS-2-mediated PI 3-kinase activation as well as p42MAPK and p44MAPK tyrosine phosphorylation, leading to impaired insulin-stimulated glucose uptake.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
190 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献