Endothelium removal induces iNOS in rat aorta in organ culture, leading to tissue damage

Author:

Binko J.1,Meachem S.1,Majewski H.1

Affiliation:

1. Prince Henry’s Institute of Medical Research, Clayton, 3168 Victoria, Australia

Abstract

After endothelial damage in vivo, there is an induction of nitric oxide synthase (NOS) in the underlying smooth muscle cells. We hypothesized that intrinsic factors could induce NOS independently of blood elements. This was tested using an in vitro organ culture technique. Rat aortas with endothelium removed before 24-h organ culture (ERB) failed to constrict to phenylephrine after culture, whereas with endothelium removal after culture there was a normal constrictor response. Constrictor activity in ERB aortas was restored by the concomitant treatment with either the protein synthesis inhibitor cycloheximide (1 μM) or the NOS inhibitorl- N 5-(1-iminoethyl)ornithine hydrochloride (l-NIO, 100 μM). The ERB aortas also had an elevated NOS activity and induced NOS (iNOS) immunoreactivity. The constrictor response to phenylephrine in ERB aortas was only partially restored by acute application ofl-NIO subsequent to the 24-h organ culture, which suggests that other effects during culture contributed to the diminished tissue response. When ERB aortas were treated with reduced glutathione (GSH, 3 mM for 24 h), acute application of l-NIO then fully restored the constrictor effect. This suggests that peroxynitrite produced during culture may in part be responsible for loss of constrictor effects, and this was substantiated by the presence of nitrated tyrosine residues in aortic proteins and also widespread DNA damage, which was prevented by bothl-NIO and GSH. Thus some of the immediate (24-h) effects of endothelium removal involve intrinsic mechanisms resulting in iNOS synthesis, which leads to both nitric oxide and peroxynitrite generation, with resultant tissue damage and loss of contractile function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Reference50 articles.

1. Glutathione Protects Astrocytes from Peroxynitrite-Mediated Mitochondrial Damage: Implications for Neuronal/ Astrocytic Trafficking and Neurodegeneration

2. The biology of restenosis

3. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly

4. Endothelial Cell Injury in Cardiovascular Surgery: Atherosclerosis 11Recent discoveries in the field of vascular biology have led to an expanded understanding of the pathogenesis of many of the immediate and long-term complications of patients undergoing cardiovascular operations and interventional cardiologic procedures. In particular, the vascular endothelium has emerged as the central focus of many of the biologic events that affect the preoperative, operative, and postoperative course of nearly all heart surgery patients. A recurring theme in the study of endothelial cell biology is the crucial role that endothelial cell injury plays in the difficulties that our patients encounter. The deleterious effects of endothelial cell injury are most evident in the acute syndromes of vasospasms, coagulopathy, ischemia/reperfusion injury, and the systemic inflammatory response to cardiopulmonary bypass. In addition, chronic endothelial cell injury contributes to the development of anastomotic narrowing and the progression of atherosclerosis, both of which limit the long-term success of coronary artery bypass grafting. Because of the increasingly recognized role of the endothelium in cardiovascular function there is a tremendous amount of basic science information detailing the response of the endothelium to injury. This is the last in a series of seven reviews intended as an introduction to the major topics of endothelial cell biology that are of importance to the practicing cardiothoracic surgeon. In particular, the authors have focused on the role that the endothelium has on the development of vasomotor dysfunction, bleeding and thrombosis, neutrophil-endothelial cell interaction, and obstructive arteriopathy. The aim of these reviews is to provide a concise reference point for cardiothoracic surgeons as they evaluate the ever-accumulating research findings and new therapies that stem from the study of the endothelium in response to the insults encountered in cardiothoracic surgery.Edward D. Verrier, MD

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3