MicroRNA-183 inhibition exerts suppressive effects on diabetic retinopathy by inactivating BTG1-mediated PI3K/Akt/VEGF signaling pathway

Author:

Zhang Zhen-Zhen1,Qin Xiu-Hong2,Zhang Jing1

Affiliation:

1. Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China

2. Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China

Abstract

Diabetic retinopathy (DR) is a serious diabetic complication caused by both environmental and genetic factors. Molecular mechanisms of DR may lead to the discovery of reliable prognostic indicators. The current study aimed to clarify the mechanism of microRNA-183 (miR-183) in DR in relation to the PI3K/Akt/VEGF signaling pathway. Microarray-based gene expression profiling of DR was used to identify the differentially expressed genes. Sprague-Dawley rats were used for the establishment of DR models, and then miR-183 was altered by mimic or inhibitor or BTG1 was downregulated by siRNA to explore the regulatory mechanism of miR-183 in DR. Furthermore, the expression of miR-183, CD34, endothelial nitric oxide synthase (eNOS), BTG1 and the PI3K/Akt/VEGF signaling pathway-related genes as well as reactive oxygen species (ROS) level was determined, and the relationship between miR-183 and BTG1 was also verified. Cell growth, cell apoptosis, and angiogenesis were determined. Microarray analysis revealed the involvement of miR-183 in DR via the PI3K/Akt/VEGF signaling pathway by targeting BTG1. Upregulated miR-183 and downregulated BTG1 were observed in retinal tissues of DR rats. miR-183 overexpression activated the PI3K/Akt/VEGF signaling pathway, upregulated CD34, eNOS, and ROS, and inhibited BTG1. BTG1 was confirmed as a target gene of miR-183. miR-183 overexpression or BTG1 knockdown promoted cell growth and tube formation while it suppressed cell apoptosis of vascular endothelial cells in DR rats. In this study, we demonstrated that miR-183 silencing inhibiting cell growth and tube formation in vascular endothelial cells of DR rats via the PI3K/Akt/VEGF signaling pathway by upregulating BTG1.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province (Liaoning Natural Science Foundation)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3