Tissue-dependent loss of phosphofructokinase-M in mice with interrupted activity of the distal promoter: impairment in insulin secretion

Author:

Richard Ann-Marie T.,Webb Dominic-Luc,Goodman Jessie M.,Schultz Vera,Flanagan John N.,Getty-Kaushik Lisa,Deeney Jude T.,Yaney Gordon C.,Dunaway George A.,Berggren Per-Olof,Tornheim Keith

Abstract

Phosphofructokinase is a key enzyme of glycolysis that exists as homo- and heterotetramers of three subunit isoforms: muscle, liver, and C type. Mice with a disrupting tag inserted near the distal promoter of the phosphofructokinase-M gene showed tissue-dependent differences in loss of that isoform: 99% in brain and 95–98% in islets, but only 50–75% in skeletal muscle and little if any loss in heart. This correlated with the continued presence of proximal transcripts specifically in muscle tissues. These data strongly support the proposed two-promoter system of the gene, with ubiquitous use of the distal promoter and additional use of the proximal promoter selectively in muscle. Interestingly, the mice were glucose intolerant and had somewhat elevated fasting and fed blood glucose levels; however, they did not have an abnormal insulin tolerance test, consistent with the less pronounced loss of phosphofructokinase-M in muscle. Isolated perifused islets showed about 50% decreased glucose-stimulated insulin secretion and reduced amplitude and regularity of secretory oscillations. Oscillations in cytoplasmic free Ca2+ and the rise in the ATP/ADP ratio appeared normal. Secretory oscillations still occurred in the presence of diazoxide and high KCl, indicating an oscillation mechanism not requiring dynamic Ca2+ changes. The results suggest the importance of phosphofructokinase-M for insulin secretion, although glucokinase is the overall rate-limiting glucose sensor. Whether the Ca2+ oscillations and residual insulin oscillations in this mouse model are due to the residual 2–5% phosphofructokinase-M or to other phosphofructokinase isoforms present in islets or involve another metabolic oscillator remains to be determined.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Reference55 articles.

1. Andres V, Schultz V, Tornheim K. Oscillatory synthesis of glucose 1,6-bisphosphate and frequency modulation of glycolytic oscillations in skeletal muscle extracts. J Biol Chem 265: 21441–21447, 1990.

2. Bergsten P, Grapengiesser E, Gylfe E, Tengholm A, Hellman B. Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J Biol Chem 269: 8749–8753, 1994.

3. Calcium and Glycolysis Mediate Multiple Bursting Modes in Pancreatic Islets

4. Interaction of Glycolysis and Mitochondrial Respiration in Metabolic Oscillations of Pancreatic Islets

5. Adaptation of Glycolytic Enzymes: Glucose Use and Insulin Release in Rat Pancreatic Islets During Fasting and Refeeding

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3