Hepatic sexual dimorphism: ontogeny and influence of adult gonadectomy

Author:

Studer R. K.1,Ganas L.1

Affiliation:

1. Department of Physiology, University of Pittsburgh School of Medicine,Pennsylvania 15261.

Abstract

The ontogeny of alpha 1- and beta-adrenergic receptors and their relative stimulation of phosphorylase alpha activity in hepatic tissue from male and female rats were compared. A decrease in beta-adrenergic receptor concentration and 4-(t-butylamino-2-hydroxypropoxy)-[5,7-3H]benzimidazol-2-one HCl affinity for these sites was found in males and females, when data from membranes of 20- to 22-day animals was compared with that from neonates. No subsequent decline in receptor concentration was noted in the female; however, the beta-mediated phosphorylase activation was further diminished by 49-56 days, suggesting maturational changes beyond the receptor-adenylate cyclase system. Although high-affinity beta-adrenergic receptors were documented in membranes from pubertal males, they were not identified on the intact cells, and activation of phosphorylase alpha via the beta-pathway was minimal. This suggests the majority of the beta-receptors are sequestered in cellular sites not accessible to the hydrophilic ligand or epinephrine in the sexually mature male. Ontogeny of the alpha 1-adrenergic receptors was similar in males and females. Gonadectomy of mature males and females did not eliminate the sexual differences in adrenergic response. However, the ovariectomized females developed an enhanced basal and alpha-adrenergic stimulated phosphorylase activity. The rise in cytosolic free calcium in response to epinephrine was increased in the ovariectomized females to values seen in the intact male, whereas the response in the castrate male was depressed. The results suggest the dimorphism in alpha 1- and beta-adrenergic receptor function is determined by factors other than the ambient concentration of sex steroids in the adult.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3