Fatty acid transport and FAT/CD36 are increased in red but not in white skeletal muscle of ZDF rats

Author:

Chabowski Adrian,Chatham John C.,Tandon Narendra N.,Calles-Escandon Jorge,Glatz Jan F. C.,Luiken Joost J. F. P.,Bonen Arend

Abstract

An increased rate of fatty acid transport into skeletal muscle has been has been linked to the accumulation of intramuscular lipids and insulin resistance, and red muscles are more susceptible than white muscles in developing fatty acid-mediated insulin resistance. Therefore, we examined in Zucker diabetic fatty (ZDF) rats, relative to lean rats, 1) whether rates of fatty acid transport and transporters (FAT/CD36 and FABPpm) were upregulated in skeletal muscle during the transition from insulin resistance ( week 6) to type 2 diabetes ( weeks 12 and 24), 2) whether such changes occurred primarily in red skeletal muscle, and 3) whether changes in FAT/CD36 and GLUT4 were correlated. In red muscles of ZDF compared with lean rats, the rates of fatty acid transport were upregulated (+66%) early in life ( week 6). Compared with the increase in fatty acid transport in lean red muscle from weeks 12–24 (+57%), the increase in fatty acid transport rate in ZDF red muscle was 50% greater during this same period. In contrast, no differences in fatty acid transport rates were observed in the white muscles of lean and ZDF rats at any time ( weeks 6–24). In red muscle only, there was an inverse relationship between FAT/CD36 and GLUT4 protein expression as well as their plasmalemmal content. These studies have shown that, 1) before the onset of diabetes, as well as during diabetes, fatty acid transport and FAT/CD36 expression and plasmalemmal content are upregulated in ZDF rats, but importantly, 2) these changes occurred only in red, not white, muscles of ZDF rats.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3