Synthesis and parallel secretion of rat intestinal alkaline phosphatase and a surfactant-like particle protein

Author:

Alpers D. H.1,Zhang Y.1,Ahnen D. J.1

Affiliation:

1. Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

Rat intestinal microvillous alkaline phosphatases are secreted bidirectionally from the enterocyte attached to a phospholipid-rich membrane (surfactant-like particle). To determine the intracellular pathways for newly synthesized alkaline phosphatases and for the extracellular enzyme-particle complex in the intestinal mucosa, pulse-chase experiments were performed. Synthesis of both isoforms of alkaline phosphatase in fasted rats peaked in the Golgi at 15–30 min and in the microvillous membrane at 60 min, without intermediate localization in the basolateral membranes. A second peak of incorporation was found at 15–30 min in scrapings obtained from the apical surface of the enterocytes. These results demonstrate a dominant direct Golgi-to-microvillous membrane transport for newly synthesized alkaline phosphatase. An additional precursor pool(s) appears responsible for the early appearance of enzyme in the lumen. Newly synthesized alkaline phosphatase isoforms and the 97-kDa protein of surfactant-like particles showed parallel patterns of appearance in enterocytes, luminal washings, and lamina propria after triacylglycerol feeding and were preferentially secreted into the lumen and lamina propria at times (5-7 h) when enterocyte content of these newly synthesized proteins had declined toward basal rates. Enhanced secretion of newly synthesized proteins for hours after fat feeding could explain the prolonged rise in serum and luminal washings of both the enzyme and the particle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3