Early alteration of insulin stimulation of PI 3-kinase in muscle and adipocyte from gold thioglucose obese mice

Author:

Heydrick S. J.1,Gautier N.1,Olichon-Berthe C.1,Van Obberghen E.1,Le Marchand-Brustel Y.1

Affiliation:

1. Institut National de la Sante et de la Recherche Medicale U 145,Faculte de Medecine, Nice, France.

Abstract

The activation of phosphatidylinositol 3-kinase (PIK) was studied in vivo and in vitro in soleus muscle and adipocytes from young (8 wk) and old (30 wk) gold thioglucose obese mice. Insulin resistance assessed from muscle glucose transport and glycogen synthesis was present both in young and old obese mice. Adipocyte lipid synthesis and muscle glycolysis or glucose oxidation are not defective in young obese mice but become resistant later on. After incubation with 50 nM insulin, muscle antiphosphotyrosine-immunoprecipitable PIK activity was stimulated 5- to 10-fold in both young and old animals. This response was impaired by 56 and 75% in muscles from young and old obese mice, respectively. Insulin stimulation of receptor tyrosine kinase activity was only slightly decreased in muscle of young obese mice, whereas insulin receptor substrate 1 (IRS-1) tyrosine phosphorylation was blunted. The altered PIK stimulation in muscle, which is present both in vivo and in vitro, is thus characterized by a reduced association of PIK activity with IRS-1 and appears to result from a diminished IRS-1 tyrosine phosphorylation. In adipocytes isolated from lean mice, antiphosphotyrosine-immunoprecipitable PIK increased 25-fold within 10 min of incubation with insulin. This stimulation was markedly altered both in young and old obese mice, whereas lipogenesis was insulin resistant only in old obese animals. In adipocytes from young obese mice, insulin's stimulatory effect on the phosphorylation of insulin receptor beta-subunit, pp60, and an exogenous substrate was normal, whereas IRS-1 tyrosine phosphorylation was markedly depressed.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Divergent roles of the regulatory subunits of class IA PI3K;Frontiers in Endocrinology;2024-01-22

2. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art;Journal of Pharmacological and Toxicological Methods;2016-03

3. Methods to Induce Experimental Diabetes Mellitus;Drug Discovery and Evaluation: Pharmacological Assays;2016

4. Methods to Induce Experimental Diabetes Mellitus;Drug Discovery and Evaluation: Pharmacological Assays;2015

5. Losartan Reduces Insulin Resistance by Inhibiting Oxidative Stress and Enhancing Insulin Signaling Transduction;Experimental and Clinical Endocrinology & Diabetes;2014-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3