Sulfation pathway of thyroid hormone metabolism in selenium-deficient male rats

Author:

Wu S. Y.1,Huang W. S.1,Chopra I. J.1,Jordan M.1,Alvarez D.1,Santini F.1

Affiliation:

1. Nuclear Medicine and Medical Services, Department of Veterans AffairsMedical Center, Long Beach 90822, USA.

Abstract

Male Sprague-Dawley rats were fed a selenium-deficient yeast-based laboratory diet or a control diet for 6 wk. The tissue type I 5'-monodeiodinase (5'-MDI) activity and the immunoassayable 5'-MDI were significantly (P < 0.05) reduced in the liver and the kidney but not in the thyroid of selenium-deficient rats. The mean serum concentrations of thyroxine sulfate (T4S), 3,3',5'-triiodothyronine sulfate (T3S), and reverse T3 sulfate (rT3S) (ng/dl) were significantly increased in selenium-deficient rats (15.7, 59.4, and 22.8, respectively, n = 12) compared with control rats (< 1.0, 18.5, and 9.1, respectively, n = 12, P < 0.01). Kinetic studies were carried out during a constant infusion of unlabeled sulfated iodothyronines (T4S, T3S, or rT3S, n = 5-6/group) at a rate of 1 microgram/h by Alzet minipump for 48 h. The data showed that elevated serum concentrations of T4S or T3S in the selenium-deficient rat are due both to reduced metabolic clearance rate (MCR, mean, l.kg-1.day-1, 7.4 for T4S and 4.5 for T3S in selenium deficiency vs. 12 and 9.2, respectively in controls, P < 0.05) and increased production rate (mean, microgram.kg-1.day-1, 1.2 for T4S, and 2.7 for T3S in selenium deficiency vs. 0.12 and 1.7, respectively, in the controls, P < 0.05). However, the increased serum rT3S concentration in selenium-deficient rats is due mainly to reduced MCR (mean, l.kg-1.day-1, 34 vs. 67 in controls, P < 0.05) and its daily production rate remained unchanged in selenium deficiency (mean, microgram.kg-1.day-1, 7.6 vs. 6.1 in the control group, P > 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3