Isocaloric maternal low-protein diet alters IGF-I, IGFBPs, and hepatocyte proliferation in the fetal rat

Author:

El Khattabi Ilham,Grégoire Francine,Remacle Claude,Reusens Brigitte

Abstract

We investigated the effect of an isocaloric maternal low-protein diet during pregnancy in rats on the proliferative capacity of cultured fetal hepatocytes. The potential roles of these changes on the IGF-IGF-binding protein (IGFBP) axis, and the role of insulin and glucocorticoids in liver growth retardation, were also evaluated. Pregnant Wistar rats were fed a control (C) diet (20% protein) or a low-protein (LP) diet (8%) throughout gestation. In primary culture, the DNA synthesis of hepatocytes derived from LP fetuses was decreased by ∼30% compared with control hepatocytes ( P < 0.05). In parallel, in vivo moderate protein restriction in the dam reduced the fetal liver weight and IGF-I level in fetal plasma ( P < 0.01) and augmented the abundance of 29- to 32-kDa IGFBPs in fetal plasma ( P < 0.01) and fetal liver ( P < 0.01). By contrast, the abundance of IGF-II mRNA in liver of LP fetuses was unaffected by the LP diet. In vitro, the LP-derived hepatocytes produced less IGF-I ( P < 0.01) and more 29- to 32-kDa IGFBPs ( P < 0.01) than hepatocytes derived from control fetuses. These alterations still appeared after 3–4 days of culture, indicating some persistence in programming. Dexamethasone treatment of control-derived hepatocytes decreased cell proliferation (54 ± 2.3%, P < 0.01) and stimulated 29- to 32-kDa IGFBPs, whereas insulin promoted fetal hepatocyte growth (127 ± 5.5%, P < 0.01) and inhibited 29- to 32-kDa IGFBPs. These results show that liver growth and cell proliferation in association with IGF-I and IGFBP levels are affected in utero by fetal undernutrition. It also suggests that glucocorticoids and insulin may modulate these effects.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3