Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men

Author:

Alibegovic A. C.1,Sonne M. P.2,Højbjerre L.2,Bork-Jensen J.1,Jacobsen S.1,Nilsson E.1,Færch K.1,Hiscock N.3,Mortensen B.1,Friedrichsen M.1,Stallknecht B.2,Dela F.2,Vaag A.1

Affiliation:

1. Steno Diabetes Center, Gentofte;

2. Center for Healthy Ageing, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and

3. Unilever Discover Research and Development, Colworth Science Park, Sharnbrook, Beds, United Kingdom

Abstract

Physical inactivity is a risk factor for insulin resistance. We examined the effect of 9 days of bed rest on basal and insulin-stimulated expression of genes potentially involved in insulin action by applying hypothesis-generating microarray in parallel with candidate gene real-time PCR approaches in 20 healthy young men. Furthermore, we investigated whether bed rest affected DNA methylation in the promoter region of the peroxisome proliferator-activated receptor-γ coactivator-1α ( PPARGC1A) gene. Subjects were reexamined after 4 wk of retraining. We found that bed rest induced insulin resistance and altered the expression of more than 4,500 genes. These changes were only partly normalized after 4 wk of retraining. Pathway analyses revealed significant downregulation of 34 pathways, predominantly those of genes associated with mitochondrial function, including PPARGC1A. Despite induction of insulin resistance, bed rest resulted in a paradoxically increased response to acute insulin stimulation in the general expression of genes, particularly those involved in inflammation and endoplasmatic reticulum (ER) stress. Furthermore, bed rest changed gene expressions of several insulin resistance and diabetes candidate genes. We also observed a trend toward increased PPARGC1A DNA methylation after bed rest. We conclude that impaired expression of PPARGC1A and other genes involved in mitochondrial function as well as a paradoxically increased response to insulin of genes involved in inflammation and ER stress may contribute to the development of insulin resistance induced by bed rest. Lack of complete normalization of changes after 4 wk of retraining underscores the importance of maintaining a minimum of daily physical activity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3