Relationship between AMPK and the transcriptional balance of clock-related genes in skeletal muscle

Author:

Vieira Elaine,Nilsson Elisabeth C.,Nerstedt Annika,Ormestad Mattias,Long Yun Chau,Garcia-Roves Pablo M.,Zierath Juleen R.,Mahlapuu Margit

Abstract

Circadian clocks coordinate physiological, behavioral, and biochemical events with predictable daily environmental changes by a self-sustained transcriptional feedback loop. CLOCK and ARNTL are transcriptional activators that regulate Per and Cry gene expression. PER and CRY inhibit their own transcription, and their turnover allows this cycle to restart. The transcription factors BHLHB2 and BHLHB3 repress Per activation, whereas orphan nuclear receptors of the NR1D and ROR families control Arntl expression. Here we show the AMP-activated protein kinase (AMPK)γ3 subunit is involved in the regulation of peripheral circadian clock function. AMPKγ3 knockout ( Prkag3−/−) mice or wild-type littermates were injected with saline or an AMPK activator, 5-amino-4-imidazole-carboxamide riboside (AICAR), and white glycolytic gastrocnemius muscle was removed for gene expression analysis. Genes involved in the regulation of circadian rhythms ( Cry2, Nr1d1, and Bhlhb2) were differentially regulated in response to AICAR in wild-type mice but remained unaltered in Prkag3−/− mice. Basal expression of Per1 was higher in Prkag3−/− mice compared with wild-type mice. Distinct diurnal changes in the respiratory exchange ratio (RER) between the light and dark phase of the day were observed in wild-type mice but not Prkag3−/− mice. In summary, the expression profile of clock-related genes in skeletal muscle in response to AICAR, as well as the diurnal shift in energy utilization, is impaired in AMPKγ3 subunit knockout mice. Our results indicate AMPK heterotrimeric complexes containing the AMPKγ3 subunit may play a specific role in linking circadian oscillators and energy metabolism in skeletal muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3