Effects of extensively oxidized low-density lipoprotein on mitochondrial function and reactive oxygen species in porcine aortic endothelial cells

Author:

Roy Chowdhury Subir K.1,Sangle Ganesh V.1,Xie Xueping1,Stelmack Gerald L.2,Halayko Andrew J.12,Shen Garry X.1

Affiliation:

1. Departments of Internal Medicine and Physiology and

2. Biology of Breathing Group, Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada

Abstract

Atherosclerotic cardiovascular disease is the leading cause of mortality in the Western world. Dysfunction of the mitochondrial respiratory chain and overproduction of reactive oxygen species (ROS) are associated with atherosclerosis and cardiovascular disease. Oxidation increases the atherogenecity of LDL. Oxidized LDL may be apoptotic or nonapoptotic for vascular endothelial cells (EC), depending on the intensity of oxidation. A previous study demonstrated that nonapoptotic oxidized LDL increased activity of mitochondrial complex I in human umbilical vein EC. The present study examined the impact of extensively oxidized LDL (eoLDL) on oxygen consumption and the activities of key enzymes in the mitochondrial respiratory chain of cultured porcine aortic EC. Oxygraphy detected that eoLDL significantly reduced oxygen consumption in various mitochondrial complexes. Treatment with eoLDL significantly decreased NADH-ubiquinone dehydrogenase (complex I), succinate cytochrome c reductase (complex II/III), ubiquinone cytochrome c reductase (complex III), and cytochrome c oxidase (complex IV) activities and the NAD+-to-NADH ratio in EC compared with mildly oxidized LDL, LDL, or vehicle. Butylated hydroxytoluene, a potent antioxidant, normalized eoLDL-induced reductions in complex I and III enzyme activity in EC. Mitochondria-associated intracellular ROS and release of ROS from EC were significantly increased after eoLDL treatment. These findings suggest that eoLDL impairs enzyme activity in mitochondrial respiratory chain complexes and increases ROS generation from mitochondria of arterial EC. Collectively, these effects could contribute to vascular injury and atherogenesis under conditions of hypercholesterolemia and oxidative stress.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3