Role of the saturated fatty acid palmitate in the interconnected hypothalamic control of energy homeostasis and biological rhythms

Author:

Tse Erika K.1,Salehi Ashkan1,Clemenzi Matthew N.1,Belsham Denise D.12

Affiliation:

1. Department of Physiology, University of Toronto, Toronto, Ontario, Canada

2. Department Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, Ontario, Canada

Abstract

The brain, specifically the hypothalamus, controls whole body energy and glucose homeostasis through neurons that synthesize specific neuropeptides, whereas hypothalamic dysfunction is linked directly to insulin resistance, obesity, and type 2 diabetes mellitus. Nutrient excess, through overconsumption of a Western or high-fat diet, exposes the hypothalamus to high levels of free fatty acids, which induces neuroinflammation, endoplasmic reticulum stress, and dysregulation of neuropeptide synthesis. Furthermore, exposure to a high-fat diet also disrupts normal circadian rhythms, and conversely, clock gene knockout models have symptoms of metabolic disorders. While whole brain/animal studies have provided phenotypic end points and important clues to the genes involved, there are still major gaps in our understanding of the intracellular pathways and neuron-specific components that ultimately control circadian rhythms and energy homeostasis. Because of its complexity and heterogeneous nature, containing a diverse mix cell types, it is difficult to dissect the critical hypothalamic components involved in these processes. Of significance, we have the capacity to study these individual components using an extensive collection of both embryonic- and adult-derived, immortalized hypothalamic neuronal cell lines from rodents. These defined neuronal cell lines have been used to examine the impact of nutrient excess, such as palmitate, on circadian rhythms and neuroendocrine signaling pathways, as well as changes in vital neuropeptides, leading to the development of neuronal inflammation; the role of proinflammatory molecules in this process; and ultimately, restoration of normal signaling, clock gene expression, and neuropeptide synthesis in disrupted states by beneficial anti-inflammatory compounds in defined hypothalamic neurons.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)

Ontario Graduate Studentship

Canada Research Chairs (Chaires de recherche du Canada)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3