Cortisol stimulates system A amino acid transport and SNAT2 expression in a human placental cell line (BeWo)

Author:

Jones Helen N.,Ashworth Cheryl J.,Page Ken R.,McArdle Harry J.

Abstract

Both placental system A activity and fetal plasma cortisol concentrations are associated with intrauterine growth retardation, but it is not known if these factors are mechanistically related. Previous functional studies using hepatoma cells and fibroblasts produced conflicting results regarding the regulation of system A by cortisol. Using the b30 BeWo choriocarcinoma cell line, we investigated the regulation of system A by cortisol. System A function was analyzed using methyl amino isobutyric acid (MeAIB) transcellular transport studies. Transporter expression [system A transporter (SNAT)1/2] was studied at the mRNA and protein levels using Northern and Western blotting, respectively. Localization was carried out using immunocytochemistry. The [14C]MeAIB transfer rate across BeWo monolayers after preincubation with cortisol for 24 h was significantly increased compared with control. This was associated with a relocalization of the SNAT2 transporter at lower cortisol levels and significant upregulation of mRNA and protein expression levels at cortisol levels >1 μM. This is the first study to show functional and molecular regulation of system A by cortisol in BeWo cells. It is also the first study to identify which system A isoform is regulated. These results suggest that cortisol may be involved in upregulation of system A in the placenta to ensure sufficient amino acid supply to the developing fetus.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3