Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion

Author:

Bertram Richard,Sherman Arthur,Satin Leslie S.

Abstract

Impairment of insulin secretion from the β-cells of the pancreatic islets of Langerhans is central to the development of type 2 diabetes mellitus and has therefore been the subject of much investigation. Great advances have been made in this area, but the mechanisms underlying the pulsatility of insulin secretion remain controversial. The period of these pulses is 4–6 min and reflects oscillations in islet membrane potential and intracellular free Ca2+. Pulsatile blood insulin levels appear to play an important physiological role in insulin action and are lost in patients with type 2 diabetes and their near relatives. We present evidence for a recently developed β-cell model, the “dual oscillator model,” in which oscillations in activity are due to both electrical and metabolic mechanisms. This model is capable of explaining much of the available data on islet activity and offers possible resolutions of a number of longstanding issues. The model, however, still lacks direct confirmation and raises new issues. In this article, we highlight both the successes of the model and the challenges that it poses for the field.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3