Vitamin B-6 restriction impairs fatty acid synthesis in cultured human hepatoma (HepG2) cells

Author:

Zhao Mei1,Ralat Maria A.1,da Silva Vanessa1,Garrett Timothy J.2,Melnyk Stephan3,James S. Jill3,Gregory Jesse F.1

Affiliation:

1. Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida;

2. Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida; and

3. Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas

Abstract

Vitamin B-6 deficiency has been reported to alter n-6 and n-3 fatty acid profiles in plasma and tissue lipids; however, the mechanisms underlying such metabolic changes remain unclear. The objective of this study was to determine the effects of vitamin B-6 restriction on fatty acid profiles and fatty acid synthesis in HepG2 cells. Cells were cultured for 6 wk in media with four different vitamin B-6 concentrations (10, 20, 50, and 2,000 nM added pyridoxal, representing deficient, marginal, adequate, and supraphysiological conditions) that induced a range of steady-state cellular concentrations of pyridoxal phosphate. Total cellular lipid content was greatest in the deficient (10 nM pyridoxal) medium. The percentage of arachidonic acid and the ratio of arachidonic acid to linoleic acid in the total lipid fraction were ∼15% lower in vitamin B-6-restricted cells, which suggests that vitamin B-6 restriction affects n-6 fatty acid interconversions. Metabolic flux studies indicated significantly lower fractional synthesis rate of oleic acid and arachidonic acid at 10, 20, and 50 nM pyridoxal, whereas that of eicosapentaenoic acid was lower in the cells cultured in 10 nM pyridoxal. Additionally, relative mRNA expressions of Δ5 and Δ6 desaturases were 40–50% lower in vitamin B-6-restricted cells. Overall, these findings suggest that vitamin B-6 restriction alters unsaturated fatty acid synthesis, particularly n-6 and n-3 polyunsaturated fatty acid synthesis. These results and observations of changes in human plasma fatty acid profiles caused by vitamin B-6 restriction suggest a mechanism by which vitamin B-6 inadequacy influences the cardiovascular risk.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3