Loss of the glucocorticoid receptor in zebrafish improves muscle glucose availability and increases growth

Author:

Faught Erin1,Vijayan Mathilakath M.1ORCID

Affiliation:

1. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada

Abstract

Chronic stress and the associated elevation in corticosteroid levels increase muscle protein catabolism. We hypothesized that the glucocorticoid receptor (GR)-regulated restriction of muscle glucose availability may play a role in the increased protein catabolism during chronic stress. To test this, we generated a ubiquitous GR knockout (GRKO) zebrafish to determine the physiological consequence of glucocorticoid stimulation on muscle metabolism and growth. Adult GRKO zebrafish had higher body mass, and this corresponded to an increased protein and lipid, but not carbohydrate, content. GRKO fish were hypercortisolemic, but they elicited a higher cortisol response to an acute stressor. However, the stressor-induced increase in plasma glucose level observed in the wild type was completely abolished in the GRKO fish. Also, the muscle, but not liver, capacity for glucose uptake was enhanced in the GRKO fish, and this corresponded with a higher hexokinase activity in the mutants. Zebrafish lacking GR also showed a higher capacity for protein synthesis, including increased phosphorylation of eukaryotic initiation factor 4B, higher expression of heat shock protein cognate 70, and total protein content. A chronic fasting stressor reduced body mass and muscle protein content in adult zebrafish, but this decrease was attenuated in the GRKO compared with the wild-type fish. Metabolomics analysis revealed that the free pool of amino acid substrates used for oxidation and gluconeogenesis were lower in the fasted GRKO fish muscle compared with the wild type. Altogether, chronic stressor-mediated GR signaling limits muscle glucose uptake, and this may play a role in protein catabolism, leading to the growth suppression in fish.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3