Grass carp somatolactin: I. Evidence for PACAP induction of somatolactin-α and -β gene expression via activation of pituitary PAC-I receptors

Author:

Jiang Quan,Ko Wendy K. W.,Lerner Ethan A.,Chan K. M.,Wong Anderson O. L.

Abstract

Somatolactin (SL), the latest member of the growth hormone/prolactin family, is a novel pituitary hormone with diverse functions. At present, SL can be identified only in fish but not in tetrapods and its regulation at the pituitary level has not been fully characterized. Using grass carp as a model, we examined the direct effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on SL secretion and synthesis at the pituitary cell level. As a first step, the structural identity of grass carp SL, SLα and SLβ, was established by 5′/3′-rapid amplification of cDNA ends. These two SL isoforms are single-copy genes and are expressed in two separate populations of pituitary cells located in the pars intermedia. In the carp pituitary, PACAP nerve fibers were detected in the nerve tracts of the neurohypophysis and extended into the vicinity of pituitary cells forming the pars intermedia. In primary cultures of grass carp pituitary cells, PACAP was effective in stimulating SL release, cellular SL content, and total SL production. The increase in SL production also occurred with parallel rises in SLα and SLβ mRNA levels. With the use of a combination of molecular and pharmacological approaches, PACAP-induced SL release and SL gene expression were shown to be mediated by pituitary PAC-I receptors. These findings, as a whole, suggest that PACAP may serve as a hypophysiotropic factor in fish stimulating SL secretion and synthesis at the pituitary level. Apparently, PACAP-induced SL production is mediated by upregulation of SLα and SLβ gene expression through activation of PAC-I receptors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Reference54 articles.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3