Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology

Author:

O'Regan D.,Kenyon C. J.,Seckl J. R.,Holmes M. C.

Abstract

Glucocorticoid overexposure in utero may underlie the association between low birth weight and subsequent development of common cardiovascular and metabolic pathologies. Previously, we have shown that prenatal dexamethasone (DEX) exposure in rat reduces birth weight and programs the hypothalamic-pituitary axis and fasting and postprandial hyperglycemia in adult males and hypertension in adult males and females. This study aimed to determine 1) whether there were gender differences in prenatal DEX-programmed offspring, and 2) whether the renin-angiotensin system (RAS) plays a role in the programming of hypertension. Rats exposed to DEX in utero (100 μg·kg−1·day−1 from embryonic days 14–21) were of lower birth weight (by 12%, P < 0.01) and displayed full catch-up growth within the first month of postnatal life. DEX-treated male offspring in adulthood selectively displayed elevated plasma adrenocorticotropic hormone (by 221%) and corticosterone (by 188%, P < 0.05), postprandial insulin-glucose ratios (by 100%, P < 0.05), and hepatic expression of the gluconeogenic enzyme phospho enolpyruvate carboxykinase (by 38%, P < 0.05). Conversely, DEX-programmed females were hypertensive (by 11%, P < 0.05), with elevated hepatic angiotensinogen mRNA expression (by 9%, P < 0.05), plasma angiotensinogen (by 61%, P < 0.05), and renin activity (by 88%, P < 0.05). These findings demonstrate that prenatal glucocorticoids program adulthood cardiovascular and metabolic physiology in a gender-specific pattern, and that an activated RAS may in part underlie the hypertension associated with prenatal DEX programming.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 200 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3