Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice

Author:

Bradley Richard L.,Jeon Justin Y.,Liu Fen-Fen,Maratos-Flier Eleftheria

Abstract

Exercise promotes weight loss and improves insulin sensitivity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Obesity correlates with increased production of inflammatory cytokines, which in turn, contributes to systemic insulin resistance. To test the hypothesis that exercise mitigates this inflammatory response, thereby improving insulin sensitivity, we developed a model of voluntary exercise in mice made obese by feeding of a high fat/high sucrose diet (HFD). Over four wk, mice fed chow gained 2.3 ± 0.3 g, while HFD mice gained 6.8 ± 0.5 g. After 4 wk, mice were subdivided into four groups: chow-no exercise, chow-exercise, HFD-no exercise, HFD-exercise and monitored for an additional 6 wk. Chow-no exercise and HFD-no exercise mice gained an additional 1.2 ± 0.3 g and 3.3 ± 0.5 g respectively. Exercising mice had higher food consumption, but did not gain additional weight. As expected, GTT and ITT showed impaired glucose tolerance and insulin resistance in HFD-no exercise mice. However, glucose tolerance improved significantly and insulin sensitivity was completely normalized in HFD-exercise animals. Furthermore, expression of TNF-α, MCP-1, PAI-1 and IKKβ was increased in adipose tissue from HFD mice compared with chow mice, whereas exercise reversed the increased expression of these inflammatory cytokines. In contrast, expression of these cytokines in liver was unchanged among the four groups. These results suggest that exercise partially reduces adiposity, reverses insulin resistance and decreases adipose tissue inflammation in diet-induced obese mice, despite continued consumption of HFD.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3