Endothelial microparticles increase in mitral valve disease and impair mitral valve endothelial function

Author:

Ci Hong-Bo123,Ou Zhi-Jun234,Chang Feng-Jun123,Liu Dong-Hong5,He Guo-Wei67,Xu Zhe12,Yuan Hai-Yun123,Wang Zhi-Ping12,Zhang Xi12,Ou Jing-Song123

Affiliation:

1. Division of Cardiac Surgery,

2. key Laboratory of Assisted Circulation, Ministry of Health,

3. Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases,

4. Division of Hypertension and Vascular Diseases, and

5. Department of Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China;

6. TEDA International Cardiovascular Hospital, Medical College, Nankai University, Tianjin, People's Republic of China; and

7. Department of Surgery, Oregon Health and Science University, Portland, Oregon

Abstract

Mitral valve endothelial cells are important for maintaining lifelong mitral valve integrity and function. Plasma endothelial microparticles (EMPs) increased in various pathological conditions related to activation of endothelial cells. However, whether EMPs will increase in mitral valve disease and their relationship remains unclear. Here, 81 patients with mitral valve disease and 45 healthy subjects were analyzed for the generation of EMPs by flow cytometry. Human mitral valve endothelial cells (HMVECs) were treated with EMPs. The phosphorylation of Akt and endothelial nitric oxide synthase (eNOS), the association of eNOS and heat shock protein 90 (HSP90), and the generation of nitric oxide (NO) and superoxide anion (O2˙) were measured. EMPs were increased significantly in patients with mitral valve disease compared with those in healthy subjects. EMPs were negatively correlated with mitral valve area in patients with isolated mitral stenosis. EMPs were significantly higher in the group with severe mitral regurgitation than those in the group with mild and moderate mitral regurgitation. Furthermore, EMPs were decreased dramatically in both Akt and eNOS phosphorylation and the association of HSP90 with eNOS in HMVECs. EMPs decreased NO production but increased O2˙ generation in HMVECs. Our data demonstrated that EMPs were significantly increased in patients with mitral valve disease. The increase of EMPs can in turn impair HMVEC function by inhibiting the Akt/eNOS-HSP90 signaling pathway. These findings suggest that EMPs may be a therapeutic target for mitral valve disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3