Affiliation:
1. Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; and
2. Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
Abstract
Anterior pituitary cells express cation-conducting P2X receptor channels (P2XRs), but their molecular identity, electrophysiological properties, cell-specific expression pattern, and physiological roles have been only partially characterized. In this study, we show by quantitative RT-PCR that mRNA transcripts for the P2X4subunit are the most abundant in rat anterior pituitary tissue and confirm the P2X4R protein expression by Western blot analysis. Single-cell patch-clamp recordings show that extracellular ATP induced an inward depolarizing current in a majority of thyrotropin-releasing hormone-responsive pituitary cells, which resembled the current profile generated by recombinant P2X4R. The channels were activated and desensitized in a dose-dependent manner and deactivated rapidly. Activation of these channels led to stimulation of electrical activity and promotion of voltage-gated and voltage-insensitive Ca2+influx. In the presence of ivermectin, a specific allosteric modulator of P2X4Rs, there was an approximately fourfold increase in the maximum amplitude of the ATP-induced inward current, accompanied by an increase in the sensitivity of receptors for ATP, slowed deactivation of receptors, and enhanced ATP-induced prolactin release. These results indicate that thyrotropin-releasing hormone-responsive cells, including lactotrophs, express homomeric and/or heteromeric P2X4Rs, which facilitate Ca2+influx and hormone secretion.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献