Altered metabolism and resistance to obesity in long-lived mice producing reduced levels of IGF-I

Author:

Salmon Adam B.123ORCID,Lerner Chad4,Ikeno Yuji153,Motch Perrine Susan M.6,McCarter Roger7,Sell Christian4

Affiliation:

1. The Sam and Ann Barshop Institute for Longevity and Aging Studies,

2. Department of Molecular Medicine, and

3. The Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, Audie L. Murphy Veterans Affairs Hospital, San Antonio, Texas;

4. Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania;

5. Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas;

6. Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania; and

7. Center for Developmental and Health Genetics, Pennsylvania State University, University Park, Pennsylvania

Abstract

The extension of lifespan due to reduced insulin-like growth factor 1 (IGF-I) signaling in mice has been proposed to be mediated through alterations in metabolism. Previously, we showed that mice homozygous for an insertion in the Igf1 allele have reduced levels of IGF-I, are smaller, and have an extension of maximum lifespan. Here, we tested whether this specific reduction of IGF-I alters glucose metabolism both on normal rodent chow and in response to high-fat feeding. We found that female IGF-I-deficient mice were lean on a standard rodent diet but paradoxically displayed an insulin-resistant phenotype. However, these mice gained significantly less weight than normal controls when placed on a high-fat diet. In control animals, insulin response was significantly impaired by high-fat feeding, whereas IGF-I-deficient mice showed a much smaller shift in insulin response after high-fat feeding. Gluconeogenesis was also elevated in the IGF-I-deficient mice relative to controls on both normal and high-fat diet. An analysis of metabolism and respiratory quotient over 24 h indicated that the IGF-I-deficient mice preferentially utilized fatty acids as an energy source when placed on a high-fat diet. These results indicate that reduction in the circulating and tissue IGF-I levels can produce a metabolic phenotype in female mice that increases peripheral insulin resistance but renders animals resistant to the deleterious effects of high-fat feeding.

Funder

NIA

American Federation of Aging Research

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3