Gastric inhibitory polypeptide immunoneutralization attenuates development of obesity in mice

Author:

Boylan Michael O.1,Glazebrook Patricia A.1,Tatalovic Milos1,Wolfe M. Michael1

Affiliation:

1. Division of Gastroenterology, MetroHealth Medical Center and Case Western Reserve University, Cleveland, Ohio

Abstract

Previous reports have suggested that the abrogation of gastric inhibitory polypeptide (GIP) signaling could be exploited to prevent and treat obesity and obesity-related disorders in humans. This study was designed to determine whether immunoneutralization of GIP, using a newly developed specific monoclonal antibody (mAb), would prevent the development of obesity. Specific mAb directed against the carboxy terminus of mouse GIP was identified, and its effects on the insulin response to oral and to intraperitoneal (ip) glucose and on weight gain were evaluated. Administration of mAb (30 mg/kg body wt, BW) to mice attenuated the insulin response to oral glucose by 70% and completely eliminated the response to ip glucose coadministered with human GIP. Nine-week-old C57BL/6 mice injected with GIP mAbs (60 mg·kg BW−1·wk−1) for 17 wk gained 46.5% less weight than control mice fed an identical high-fat diet ( P < 0.001). No significant differences in the quantity of food consumed were detected between the two treatment groups. Furthermore, magnetic resonance imaging demonstrated that subcutaneous, omental, and hepatic fat were 1.97-, 3.46-, and 2.15-fold, respectively, lower in mAb-treated animals than in controls. Moreover, serum insulin, leptin, total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides were significantly reduced, whereas the high-density lipoprotein (HDL)/TC ratio was 1.25-fold higher in treated animals than in controls. These studies support the hypothesis that a reduction in GIP signaling using a GIP-neutralizing mAb might provide a useful method for the treatment and prevention of obesity and related disorders.

Funder

MeteroHealth Medical Center

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3