Affiliation:
1. Metabolism Unit C2:94 and KI/AZ Integrated CardioMetabolic Center, Department of Medicine, and Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
Abstract
Bile acid (BA) production in mice is regulated by hepatic farnesoid X receptors and by intestinal fibroblast growth factor (FGF)-15 (in humans, FGF-19), a suppressor of BA synthesis that also reduces serum triglycerides and glucose. Cholestyramine treatment reduces FGF-19 and induces BA synthesis, whereas plasma triglycerides may increase from unclear reasons. We explored whether FGF-19 may suppress BA synthesis and plasma triglycerides in humans by modulation of FGF-19 levels through long-term cholestyramine treatment at increasing doses. In a second acute experiment, metabolic responses from 1 day of cholestyramine treatment were monitored. Long-term treatment reduced serum FGF-19 by >90%; BA synthesis increased up to 17-fold, whereas serum BAs, triglycerides, glucose, and insulin were stable. After long-term treatment, serum BAs and FGF-19 displayed rebound increases above baseline levels, and BA and cholesterol syntheses normalized after 1 wk without rebound reductions. Acute cholestyramine treatment decreased FGF-19 by 95% overnight and serum BAs by 60%, while BA synthesis increased fourfold and triglycerides doubled. The results support that FGF-19 represses BA synthesis but not serum triglycerides. However, after cessation of both long-term and 1-day cholestyramine treatment, circulating FGF-19 levels were normalized within 2 days, whereas BA synthesis remained significantly induced in both situations, indicating that also other mechanisms than the FGF-19 pathway are responsible for stimulation of BA synthesis elicited by cholestyramine. Several of the responses during cholestyramine treatment persisted at least 6 days after treatment, highlighting the importance of removing such treatment well before evaluating dynamics of the enterohepatic circulation in humans.
Funder
Vetenskapsrådet (Swedish Research Council)
Hjärt-Lungfonden (Swedish Heart-Lung Foundation)
Stockholms Läns Landsting (Stockholm County Council)
Fondation Leducq
Karolinska Institutet cardiovascularr programme/ SLL
Karolinska Institute cardiovascular programme /SLL
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献