(−)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells

Author:

Cho Si Young,Park Pil Joon,Shin Hyun Jung,Kim Young-Kyung,Shin Dong Wook,Shin Eui Seok,Lee Hyoung Ho,Lee Byeong Gon,Baik Joo-Hyun,Lee Tae Ryong

Abstract

Adiponectin is an adipocyte-specific secretory hormone that can increase insulin sensitivity and promote adipocyte differentiation. Administration of adiponectin to obese or diabetic mice reduces plasma glucose and free fatty acid levels. Green tea polyphenols possess many pharmacological activities such as antioxidant, anti-inflammatory, antiobesity, and antidiabetic activities. To investigate whether green tea polyphenols have an effect on the regulation of adiponectin, we measured expression and secretion levels of adiponectin protein after treatment of each green tea polyphenols in 3T3-L1 adipocytes. We found that (−)-catechin enhanced the expression and secretion of adiponectin protein in a dose- and time-dependent manner. Furthermore, treatment of (−)-catechin increased insulin-dependent glucose uptake in differentiated adipocytes and augmented the expression of adipogenic marker genes, including PPARγ, CEBPα, FAS, and SCD-1, when (−)-catechin was treated during adipocyte differentiation. In search of the molecular mechanism responsible for inducible effect of (−)-catechin on adiponectin expression, we found that (−)-catechin markedly suppresses the expression of Kruppel-like factor 7 (KLF7) protein, which has recently been reported to inhibit the expression of adiponectin and other adipogenesis related genes, including leptin, PPARγ, C/EBPα, and aP2 in adipocytes. KLF7 is a transcription factor in adipocyte and plays an important role in the pathogenesis of type 2 diabetes. Taken together, these data suggest that the upregulation of adiponectin protein by (−)-catechin may involve, at least in part, suppression of KLF7 in 3T3-L1 cells.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3