Challenges of rapamycin repurposing as a potential therapeutic candidate for COVID-19: implications for skeletal muscle metabolic health in older persons

Author:

Lees Matthew J.1ORCID,Hodson Nathan2ORCID,Tinline-Goodfellow Cassidy T.1ORCID,Fung Hugo J. W.1ORCID,Elia Antonis3ORCID,Moore Daniel R.1ORCID

Affiliation:

1. Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada

2. Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, United Kingdom

3. Division of Environmental Physiology, School of Chemistry, Bioengineering and Health, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that has spread worldwide, resulting in over 6 million deaths as of March 2022. Older people have been disproportionately affected by the disease, as they have a greater risk of hospitalization, are more vulnerable to severe infection, and have higher mortality than younger patients. Although effective vaccines have been rapidly developed and administered globally, several clinical trials are ongoing to repurpose existing drugs to combat severe infection. One such drug, rapamycin, is currently under study for this purpose, given its immunosuppressant effects that are mediated by its inhibition of the mechanistic target of rapamycin (mTOR), a master regulator of cell growth. Consistent with this premise, acute rapamycin administration in young healthy humans blocks or attenuates mTOR and its downstream effectors, leading to the inhibition of muscle protein synthesis (MPS). Skeletal muscle mass declines when MPS is chronically lower than muscle protein breakdown. This is consequential for older people who are more susceptible to anabolic resistance (i.e., the blunting of MPS) due to reduced activity, sedentariness, or bed rest such as that associated with COVID-19 hospitalization, and who have also demonstrated a delayed or blunted ability to regain inactivity-induced muscle loss. The lack of studies investigating rapamycin administration on skeletal muscle in older people, and the emergence of effective antiviral medications against severe infection, may indicate the reduced relevance of drug repurposing for present or future pandemics.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3